
RTOS services —Part I

Kizito NKURIKIYEYEZU,
Ph.D.

Readings

Read Chap 6 of
Simon, D. E. (1999).
An Embedded
Software Primer
Topics

RTOS
fundamentals
Tasks
Semaphores
Priority inversion

1Readings are based on Simon, D. E. (1999). An Embedded Software Primer.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 1 / 51

Tasks and Task States
Task—a subroutine in RTOS
Embedded software application makes calls to the RTOS
functions to start tasks, passing to the OS, start address,
stack pointers, etc. of the tasks
Task states

1 Running—A task is running when it is actively being executed
by a processor, and hence, makes progress. The number of
tasks in the running state cannot exceed the total number of
processors available in the system.

2 Ready—A task is in the ready state when it is eligible for
execution but no processors are currently available to execute
it, because all of them are busy with other activities. A task
does not make any progress when it is ready

3 Blocked—has nothing for microprocessor, waiting for external
event, e.g. network data handler with no data from network,
button response task with button not yet pressed. Blocked
task can no longer compete with other tasks for execution

4 Suspended—Task go into a suspended state either voluntarily
or due to the initiative of another task. They can return to the
ready state only when another task explicitly resumes them.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 2 / 51

FIG 1. Task states transition in FreeRTOS1

1https://www.freertos.org/RTOS-task-states.html
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 3 / 51

https://www.freertos.org/RTOS-task-states.html

FIG 2. Task state diagram in the FreeRTOS operating system.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 4 / 51

Task-based scheduling
The scheduler keeps track of the states of each task
It also decides which task should run
Based on priorities

priorities set by user
non-blocked task with highest priority runs

How does a scheduler know when a task has become
blocked or unblocked?—The RTOS provides API for events
to wait for or signal events that occurred
What happen if all tasks are blocked —the scheduler will wait
for something to happen. If nothing happen, it usually the
programmer’s fault (or the software is supposed to wait that
long?!)
What if two tasks of the same priories are ready?—depends
on the RTOS and how it implements this behavior
FreeRTOS store a full copy of the processor state in a data
structure, known as Task Control Block also known as the
TCB (see Fig. 3).Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 5 / 51

FIG 3. Main task control block components in FreeRTOS

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 6 / 51

1 typedef struct tskTaskControlBlock{
2 /*The location of the last item placed on the

stack */
3 volatile StackType_t * pxTopOfStack;
4 /*The list that the state (Ready, Blocked,

Suspended). */
5 ListItem_t xStateListItem;
6 /*Used to reference a task from an event list. */
7 ListItem_t xEventListItem;
8 /*The priority of the task. 0 is the lowest

priority. */
9 UBaseType_t uxPriority;

10 /*Points to the start of the stack. */
11 StackType_t * pxStack;
12 /*Descriptive name given to the task to

facilitates debugging*/
13 char pcTaskName[configMAX_TASK_NAME_LEN];
14 } tskTCB;

LISTING 1: Excerpt of the FreeRTOS task control block
2see details at

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 7 / 51

https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/tasks.c

Task-based scheduling
The TCB contains a full copy of the processor state2 to allow
the OS to switch from one task to another

Context switch—the OS saves the processor state of the
previous task into its TCB and then restoring the processor
state of the next task
Program counter —points to the next instruction that the
processor will execute, within the task’s program code
Stack pointer—locates the boundary between full and empty
elements in the task stack

The data and program memory allocation information keep a
record of the memory areas currently assigned to the task.
The task state and attributes are used by the operating
system to schedule tasks in an orderly way and support
inter-task synchronization and communication.
Resource allocation state hold which resources (e.g.,
hardware devices connected to the system) that may need to
be released open exit

2This is not entirely true. Some OS store part or all of the processor state
elsewhere, for instance in the task stack, and then make it accessible from the
TCB through a pointer.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 8 / 51

Task-based scheduling
Deleted tasks —immediately ceases execution but its TCB is
not immediately removed from the system. Instead, the task
goes into the waiting termination state until the OS completes
the cleanup operation3

Task scheduling —the OS decides which task to move in the
running state whenever a processor is available for use.
The transition from the running to the blocked state is always
under the control of the affected task and when specific event
eventually occurs, the waiting task is returned to the ready
state
When a task is resumed, it unconditionally goes from the
suspended state into the ready state. This happens
regardless of which state it was in before being suspended.

3In FreeRTOS, this is done by the idle task—which is executed when the system
is otherwise idle.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 9 / 51

Example—Underground tank
monitoring

The underground tank monitoring system monitors up to
eight underground tanks by reading thermometers and the
levels of floats installed in those tanks.
To read the floats level in one of the tanks, the
microprocessors must send a command to the hardware to
tell it which tank to read from.
When the hardware has obtained a new float reading a few
milliseconds letter, it interrupt; the microprocessor can read
the the level from the hardware at any time later.
In the code Listing 3 below:

vLevelTask compute gasoline in the tank. It is time consuming
but has low priority
vButtonTask is short and has higher priority
if a user pressess a button, the RTOS block the vLevelTask
task and run the high priority vButtonTask task.
When the vButtonTask task is finished, the RTOS will unblock
the vLevelsTask task and run it again.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 10 / 51

Scheduler
Can a task go from ready to blocked state? —No

A task goes to blocked state only when it decides for ITSELF if
it needs to wait for something or has nothing to do.
To make this decision, it needs to execute some code, thus it
is “running” before “blocked”!

Can a blocked task wake up on its own ?—No
A blocked task will have something for microprocessor to do
only if some OTHER task interrupts it and tells it that whatever
it was waiting for has happened!
Otherwise, the task will be blocked forever.

Can a task switch from ready to running or vice-versa on its
own? —No

Scheduler does all the switching between ready and running
states.
A blocked task can move to ready, and immediately switch to
running (if it has the highest priority).

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 11 / 51

Example—Underground tank
monitoring

Two tasks can be written independently of one another.
The programmers does not need to work much how fast the
task will respond.
Code in Listing 2 ensures that the RTOS knows which tasks
are available and how they should be prioritized.

1

2 void main(void){
3 // Initialize (but do not start) the RTOS
4 RTOS_Init();
5 // Tell the RTOS about the tasks
6 StartTask(vButtonTask, PRIORITY_HIGH);
7 StartTask(vLevelsTask, PRIORITY_LOW);
8 //Start the RTOS (This function never returns)
9 RTOS_Run();

10 }

LISTING 2: Main program for an underground tank monitoring
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 12 / 51

Example—Underground tank
monitoring

1 // High priority task
2 void vButtonTask(void){
3 while(true){
4 //Block until the user presses a button
5 // Quick: Respond to the user pressing the

button
6 }
7 }
8 // Low priority task
9 void vLevelTask(void){

10 while(true){
11 // Read the level of floats in tank
12 // Calculate average float level
13 // Do some interminable calculations
14 // Figure out which tank to do next
15 }
16 }

LISTING 3: Tasks for an underground tank monitoring

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 13 / 51

Example—Underground tank
monitoring

FIG 4. Tasks for an underground tank monitoring

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 14 / 51

Tasks and Data
Each task has its own private context.

the register values,
a program counter,
a stack

All other data is shared among all of the tasks in the system
Global
static variables
uninitialized and initialized variables
extern data types

Shared data caused the shared-data problem4 —use of
“Reentrancy” characterization of functions to solve this

4The shared data problem occurs when several functions (or ISRs or tasks)
share a variable. Shared data problem can arise in a system when another
higher priority task finishes an operation and modifies the data or a variable
before the completion of previous task operations.. See details at
https://automaticaddison.com/what-is-the-shared-data-problem/
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 15 / 51

https://automaticaddison.com/what-is-the-shared-data-problem/

FIG 5. Data in an RTOS-based real-time system

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 16 / 51

Shared-Data Problems
the shared object where the conflict may happen is a
“resource”
the parts of the code where the problem may happen are a
critical sections

Critical section
critical section is a sequence of operations that cannot be inter-
leaved with other operations on the same resource

Two critical sections on the same resource must execute in
mutual exclusion
there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation
system-wide disabling the preemption
selectively disabling the preemption (e.g., using semaphores
and mutex)

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 17 / 51

Shared-Data Problems
The shared data problem occurs when several functions (or
ISRs or tasks) share a variable.
This problem can arise in a system when another higher
priority task finishes an operation and modifies the data or a
variable before the completion of previous task operations
For example, in the code in Listing 4:

What would happen if the RTOS stops
vCalculateTankLvelsTask(void) task and run vButtonTask(void)
when the vCalculateTankLvelsTask(void) task was still in the
middle of computing tankData[i].timeUpdated =
getCurrentTime()?
In this case, the value displayed on the LCD will be wrong
because the tankData[i].timeUpdated will contain the previous
value,or worse, it might be even corrupted data5

5You should have learned this in your previous classes. For a refresher, please
read about non-atomicity due to multiple CPU instructions and why this might
corrupt data
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 18 / 51

1 struct{
2 long tankLevel, timeUpdated;
3 }tankData[MAX_TANKS];
4 void vButtonTask(void){
5 int i;
6 while(true){
7 i= getPressedButtonId();
8 updateLCD(tankData[i].tankLevel, tankData[i].

timeUpdated);
9 }

10 }
11 void vCalculateTankLvelsTask(void){
12 int i;
13 while(true){
14 tankData[i].tankLevel = getCurrentTankLevel;
15 tankData[i].timeUpdated = getCurrentTime();
16 i = getNextTankId();
17 }
18 }

LISTING 4: Tasks for an underground tank monitoringKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 19 / 51

https://preshing.com/20130618/atomic-vs-non-atomic-operations/

Reentrancy
Reentrant function
A function that works correctly regardless of the number of tasks
that call it between interrupts

A Reentrant function
can be called by more than one task and will always work
correctly,
even if the RTOS switches from one task to another in the
middle of executing the function.

Characteristics of reentrant functions
Only access shared variable in an atomic-way, or when
variable is on callee’s stack
A reentrant function calls only reentrant functions
A reentrant function uses system hardware (shared resource)
atomically

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 20 / 51

How to check reentrancy?
Apply the following three 3 rules to check if a function is
reentrant6,7

1 Does not use variables in a nonatomic wayunless
they are stored on stack of the calling task, or
they are private variables of the task
does not use global and static data8

2 Does not call any non-reentrant functions
3 Does not use hardware in a nonatomic way9

6https://www.geeksforgeeks.org/reentrant-function/
7IBM has a nice tutorial on how to write reentrant and threadsafe code
8Though there are no restrictions, but it is generally not advised. because the

interrupt may change certain global values and resuming the course of action
of the reentrant function with the new data may give undesired results.

9for more information, see Jack Ganssle’s introduction to reentrancy
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 21 / 51

Example —non-reentrant function
In Listing 5 Both fun1() and fun2() are not reentrant

fun1() is NOT reentrant because it uses global variable i
fun2() is NOT reentrant because it calls a non-reentrant
function

1 int i;
2 int fun1(){
3 return i * 5;
4 }
5 int fun2(){
6 return fun1() * 5;
7 }

LISTING 5: Example non-reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 22 / 51

Example —reentrant function
In Listing 6, both fun1() and fun2() are reentrant

1 int fun1(int i){
2 return i * 5;
3 }
4 int fun2(int i){
5 return fun1(i) * 5;
6 }

LISTING 6: Example of reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 23 / 51

https://www.geeksforgeeks.org/reentrant-function/
https://www.ibm.com/docs/en/aix/7.2?topic=programming-writing-reentrant-threadsafe-code
https://www.embedded.com/introduction-to-reentrancy/

Example —non-reentrant function
Is the code in Listing 7 reentrant?

1 bool error_flag = false;
2 void update_display(int j){
3 if (!error_flag){
4 printf("\n Value: %d", j);
5 j=0
6 error_flag = true;
7 }
8 else{
9 printf("\n Could not update the display");

10 error_flag = false;
11 }
12 }

LISTING 7: Example of non-reentrant functions

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 24 / 51

Example —non-reentrant function
The code in Listing 7 is not reentrant:

non-atomic use of fError
the printf() function may benon-reentrant10

10The C standard explicitly states that the functions in the standard library are not
guaranteed to be reentrant and may modify objects with static storage duration.
Thus, a signal handler cannot, in general, call standard library functions.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 25 / 51

Reentrancy—some considerations
Is the code in Listing 8 reentrant?

The function modifies a nonstack variable —thus, it should be
non-reentrant.
However, this may or may not be the case
Maybe! Depends on microprocessor and compiler

1 static int errors;
2 void update_errors(void){
3 ++errors;
4 }

LISTING 8: Is this code reentrant?

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 26 / 51

Reentrancy—some considerations
For AVR microcontrollers, the code would not be reentrant
The compiler implemented the increment using three (load,
increment, and store) machine instructions. —Thus, this
operation is not atomic.

1 update_errors:
2 push r28
3 push r29
4 in r28,__SP_L__
5 in r29,__SP_H__
6 lds r24,errors
7 lds r25,errors+1
8 adiw r24,1
9 sts errors+1,r25

10 sts errors,r24
11 ret

LISTING 9: Assembly using AVR GCC
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 27 / 51

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1364.htm

Reentrancy—some considerations
For an Intel 8086 architecture, the code would be reentrant 11

The inc instruction increases by 1 the value of a variable. It is
atomic in this case12.

1 _errors:
2 .proc _update_errors: near
3 inc _errors
4 ret

LISTING 10: Assembly for 80x86 CPU

11The Intel 8086 is a 16-bit microprocessor chip designed by Intel in the late
1970s https://en.wikipedia.org/wiki/Intel_8086

12In other CPU architecture, increment is usually three operations: Load,
Increment, then Store.
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 28 / 51

Race conditions
Race condition is an issue that hinders program correctness
when two or more tasks are allowed uncontrolled access to
some shared variables or, more generally, a shared resource

Race condition zones appear only as a consequence of task
splittingand, even in that case, their location in the schedule
is well known in advance.
In RTOS-based application, predicting race condition is hard
to predict because the task switching points are nowchosen
autonomously by the OS scheduler instead of being
hard-coded in the code.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 29 / 51

Semaphores and shared data

Semaphores
Semaphore was proposed by Edsger W. Dijkstra13 in 1965
which is a very significant technique to manage concurrent
processes by using a simple integer value, which is known as
a semaphore.
Semaphore14—a flag that is used to control access to shared
resource
Semaphores are used to avoid shared-data problems in
RTOS
In theory, a semaphore is a shared counter that can be
incremented and decremented atomically.
According to its abstract definition, a semaphore is an object
that contains two items of information

a value v—represented as a nonnegative integer
a queue of tasks q—which are waiting on the semaphore.

13https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
14https://www.guru99.com/semaphore-in-operating-system.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 30 / 51

https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://www.guru99.com/semaphore-in-operating-system.html

FIG 6. Abstract structure of a semaphore and behavior of its primitives

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 31 / 51

1 int s =0;
2 void semaphore_init (){
3 s =0;
4 }
5 void P(){
6 if(s == 0){
7 //block any other tasks to access the semaphore
8 while(s == 0){/*Do nothing. Just spin around*/}
9 }

10 else{
11 s--;
12 }
13 }
14 void V(){
15 s++;
16 }

LISTING 11: Semaphore pseudocode

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 32 / 51

FIG 7. Task states and transitions involved in semaphore operations in
FreeRTOS
Note that semaphore primitives are tied to the task state diagram because their
execution may induce the transition of a task from one state to another.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 33 / 51

If task τ enter the critical
section, the primitive P(s)
will execute, and find the
initial value of s, s = 1. it
will decrement the value to
s = 0, and will be allowed to
proceed into its critical
region immediately
If another task τ′tries to
enter the critical section
while task τ is executing,
task τ′ will be blocked
because the current value
of semaphore s = 0

FIG 8. Usage of a semaphore and its
primitives for mutual exclusion.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 34 / 51

Mutual exclusion with semaphores
How to use a semaphore for critical sections

before entering the critical section, perform a wait
after leaving the critical section, perform a post

1 void CriticalTask(void){
2 // other code
3 ...
4 semaphore_take();
5 <critical section>
6 semaphore_release()
7 ...
8 // other code
9 }

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 35 / 51

Example—Underground tank
monitoring

1 struct{
2 long tankLevel, timeUpdated;
3 }tankData[MAX_TANKS];
4

5 void vCalculateTankLvelsTask(void){
6 int i;
7 while(true){
8 TakeSemaphore();
9 tankData[i].tankLevel = getCurrentTankLevel;

10 tankData[i].timeUpdated = getCurrentTime();
11 ReleaseSemaphore();
12 i = getNextTankId();
13 }
14 }

LISTING 12: Solving the underground tank monitoring problem with
semaphoresKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 36 / 51

Example—Underground tank
monitoring
If the user presses a button while the
vCalculateTankLvelsTask(void) task is still modifying the data, and
still has the semaphore, then:

The RTOS will switch to the vButtonTask(void) task and
moved the vCalculateTankLvelsTask(void) task to the ready
state.
When the vButtonTask(void) task tries to get the semaphore
by calling TakeSemaphore(), it will block because the
semaphore is already taken by the
vCalculateTankLvelsTask(void) task.
The RTOS will then look for another task to run and will
switch back to the vCalculateTankLvelsTask(void) task since
it is in the ready state.
The vCalculateTankLvelsTask(void) task will until completion,
releases the semaphore
At this point, the vButtonTask(void) task will be able to get the
semaphore and run as expected.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 37 / 51

Semaphores in FreeRTOS16

FreeRTOS provides four different semaphore implementations:
1 counting semaphores

Equivalent to the canonical definition of a semaphore
The slowest implementation
The value of s can be declared when the semaphore is
declared

2 Binary semaphores
Their value can only be either one or zero, but they can still be
used for either mutual exclusion or task synchronization.
Faster than the one of counting semaphores.

3 Mutex semaphores
they must only be used as mutual exclusion semaphores, i.e.,
the P(s) and V(s) primitives on a mutex semaphore s must
always appear in pairs and must be placed as brackets
around critical regions.
cannot be used for task synchronization

4 Recursive mutex semaphores15
15https://www.freertos.org/RTOS-Recursive-Mutexes.html
16https://www.freertos.org/a00113.html

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 38 / 51

https://www.freertos.org/RTOS-Recursive-Mutexes.html
https://www.freertos.org/a00113.html

Binary semaphore

A binary semaphore —only
one task can have the
semaphore at a time.
Two functions to control the
semaphore:

1 TakeSemaphore()
block until the
semaphore is released
take the semaphore

2

ReleaseSemaphore()—release
a taken semaphore

FIG 9. Concept of a semaphore

Working principle—principle: if one task has called the
TakeSemaphore() function, and has not yet called
ReleaseSemaphore()function to release it, then any other task
that calls TakeSemaphore() function will be blocked until the first
task calls the ReleaseSemaphore() function.

14https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/
51aa8660524c4daba38cba7c2f5baba7

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 39 / 51

Semaphores in FreeRTOS
The four kinds of semaphore are created using functions
listed in Table 117.

TAB 1. Semaphore creation and deletion primitives of FreeRTOS

If semaphore the creation fails (e.g., no heap memory
available), the function returns a NULL pointer as shown in
Listing 13.

17Detailed info on variation semaphores API is found at
https://www.freertos.org/a00113.html
Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 40 / 51

1 SemaphoreHandle_t xSemaphore;
2 void vSemaphoreExampleTask(void * pvParameters){
3 /* Attempt to create a semaphore. */
4 xSemaphore = xSemaphoreCreateBinary();
5 if(xSemaphore == NULL)
6 {
7 /* There was insufficient FreeRTOS heap

available for the semaphore to be created
successfully. */

8 }
9 else

10 {
11 /* The semaphore can now be used and its

handle is stored in the xSemahore variable.
Note that calling xSemaphoreTake() on the

semaphore here will fail until the
semaphore has first been given. */

12 }
13 }

LISTING 13: Binary semaphore creation

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 41 / 51

Semaphore manipulation in
FreeRTOS

Once created, a semaphore can be manipulated with
function listed

TAB 2. Semaphore Manipulation Primitives of FreeRTOS

Except the mutual exclusion semaphores, most semaphores
are acted upon by means of the functions xSemaphoreTake
() and xSemaphoreGive(), the FreeRTOS counterpart of P()
and V(), respectively

1 BaseType_t xSemaphoreTake(SemaphoreHandle_t
xSemaphore, TickType_t xBlockTime);

2 BaseType_t xSemaphoreGive(SemaphoreHandle_t
xSemaphore);

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 42 / 51

https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7
https://www.digikey.com/en/maker/projects/introduction-to-rtos-solution-to-part-7-freertos-semaphore-example/51aa8660524c4daba38cba7c2f5baba7
https://www.freertos.org/a00113.html

Remarks
The FreeRTOS implementation of semaphores is slightly different
from the canonical algorithms:

The canonical algorithm block the caller for an unlimited
amount of time. This is not reasonable for a RT system. Thus,
the function xSemaphoreTake() has a second argument,
xBlockTime that specifies the maximum blocking time:

if xBlockTime==portMAX_DELAY, the function blocks the
caller until the semaphore operation is complete, i.e., it
behaves like the canonical algorithm.
If xBlockTime==0, the function returns an error indication to
the caller when the operation cannot be performed
immediately.
Any other value is interpreted as the maximum amount of time
the function will possibly block the caller, expressed as an
integral number of clock ticks.

Canonical algorithm is assumed to never fail. However, in the
real-world, things go wrong. For this reason, the return value
of xSemaphoreTake() and xSemaphoreGive() is a status
code, which is pdTRUE if the operation was successful.
Otherwise, it returns pdFALSE

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 43 / 51

Potential issues in using
semaphores

The initial values of semaphores – when not set properly or
at the wrong place
The symmetry of takes and releases must match

each take must have a corresponding release somewhere in
the application
Avoid Taking the wrong semaphore unintentionally (issue with

Holding a semaphore for too long can cause waiting
tasks—deadline to be missed
Priorities could be inverted and usually solved by priority
inheritance/promotion
Semaphore work only if you use them perfectly—and there is
no guarantees that you will
SUMMARY—Using semaphore is a bug waiting to happen.
Use them sparingly.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 44 / 51

Priority inversion
FIG 10. Shortcoming of lock-based synchronization when a task halts.
If task τb is delayed while it is within its critical region, τa and any other tasks
willing to enter a critical region associated with the same lock will be blocked
and possibly be unable to make any further progress. Even though τb
proceeds normally, if the priority of τais higher than the priority of τb, the way
mutual exclusion is implemented goes against the concept of task priority,
because a higher-priority task is forced to wait until a lower-priority task has
completed part of its activities.

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 45 / 51

Priority inversion —Principle
Priority inversion is a bug that occurs when a high priority task is
indirectly preempted by a low priority task.

For example, the low priority task holds a mutex that the high
priority task must wait for to continue executing18.
In this case, the high priority task (Task H) would be blocked
as long as the low priority task (Task L) held the lock.
This is known as bounded priority inversion as the length of
time of the inversion is bounded by however long the low
priority task is in the critical section (holding the lock)19.
Unbounded priority inversion occurs when a medium priority
task (Task M) interrupts Task L while it holds the lock. It’s
called “unbounded” because Task M can now effectively
block Task H for any amount of time, as Task M is preempting
Task L —which still holds the lock

18We will talk about mutex later. An interested reader can read a few discussion
Stackoverflow

19https://www.digikey.ee/en/maker/projects/
introduction-to-rtos-solution-to-part-11-priority-inversion/
abf4b8f7cd4a4c70bece35678d178321

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 46 / 51

FIG 11. Priority Inversion —Task A has the highest priority, Task B a medium
priority and Task C the lowest priority. Priority inversion happen when the
RTOS switches from a low-priority task to a medium priority after the lowest
priority task has taken a semaphore. If the high priority task wants the
semaphore, it will have to wait until the medium task blocks. The lowest priority
cannot release the semaphore since it is blocked; thus, holds up the highest
priority indefinitely

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 47 / 51

Bounded priority inversion

FIG 12. Bounded priority inversion
the high priority task is blocked as long as the low priority task holds the lock

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 48 / 51

Unbounded priority inversion

FIG 13. Unbounded priority inversion
Unbounded priority inversion occurs when a medium priority task interrupts a
high priority task while it holds the lock

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 49 / 51

https://stackoverflow.com/q/34524
https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/abf4b8f7cd4a4c70bece35678d178321
https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/abf4b8f7cd4a4c70bece35678d178321
https://www.digikey.ee/en/maker/projects/introduction-to-rtos-solution-to-part-11-priority-inversion/abf4b8f7cd4a4c70bece35678d178321

Priority inversion —trivia

Priority inversion nearly
ended the Mars Pathfinder
mission in 1997
After deploying the rover,
the lander would randomly
reset every few days due to
an intermittent priority
inversion bug that caused
the watchdog timer to
trigger a full system restart.
NASA eventually found the
bug and sent an update
patch to the lander.

FIG 14. Mars Pathfinder landed a base
station with a roving probe on Mars in
1997. Priority inversion nearly ended
the Mars Pathfinder mission in 1997

17What really happened on Mars Rover Pathfinder?
18Mutexes and Semaphores DemystifiedKizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 50 / 51

Ways to Protect Shared Data
Disabling interrupts

Most drastic, affects all other tasks
Only method if task & interrupts share data
Fast (single instruction)

Using semaphores
Most targeted
Response times of interrupts and non data-sharing tasks are
unaffected
Not work for interrupts

Disabling task switches
In-between the above two
No effect on interrupt routines
Affects all other tasks

Kizito NKURIKIYEYEZU, Ph.D. RTOS services —Part I November 16, 2022 51 / 51

The end

http://www.cs.cornell.edu/courses/cs614/1999sp/papers/pathfinder.html
https://barrgroup.com/Embedded-Systems/How-To/RTOS-Mutex-Semaphore

	Semaphores and shared data
	Priority inversion
	The end

